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I. INTRODUCTION 

This dissertation is mainly a preliminary exploration of 

the effects radiation has on the optical isomers of the coor­

dination compounds CCo{en)^lX^ (where X = Cl-, Br-, I- and 

NOg-). In the course of the investigation it was necessary 

for the compounds to come in contact with elevated tempera­

tures (about 60-80®C), from contact with the X-ray unit. 

Therefore the effects of temperature on the racemization was 

studied. In order to account for some of the effects ob­

served in the thermal racemization data, the crystal struc­

ture of the nitrate complex was determined. 

In addition to the above mentioned sources of radiation 

(i.e. thermal heat and X-rays), the complex was also 

subjected to irradiation with gamma-rays. The gamma-ray work 

was done only superficially and could provide a good topic 

for further consideration. 

A. Optical Potatory Dispersion and Circular Dichroism 

Optical activity is the ability of a medium to rotate 

the plane of polarization of linearly polarized light. In 

order to have this ability, the medium must possess one or 

both of the following two criteria; sacrcsccpic asisotropy or 

molecular dissymmetry. Macroscopic anisotropy may be due to 

the spacial arrangement of the molecules or to the influence 

of an external field. The requirements for molecular 

dissymmetry are that the medium not have: 
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a) a center of symmetry 

b) a mirror plane 

c) an improper axis. 

The study of circular dichroism (CD) is accomplished by 

alternately passing right and left circularly polarized light 

components through the sample with a measurement of the ab­

sorption by the two components. In the study of optical 

rotatory dispersion (OBD) a beam of polarized light is passed 

through the sample and the angle of rotation is recorded. 

The polarized light is produced (Figure 1) by passing 

light through a polarizing prism, (i.e. a Rochon prism, made 

of quartz) where it is polarized in one plane. As plane po­

larized light is passed through an optically active medium, 

the plane is rotated by an angle a . In order to have the 

minimum intensity of plane polarized light reach the 

detector, an analyzer prism, crossed to the polarizer, must 

be rotated either to the right or left by an angle which is 

equal to the rotation caused by the sample. This enables one 

to measure the direction and magnitude of the rotation exper­

imentally. 

In circular dietroiss the plane of polarized light is 

passed through a Pockel's cell, made of ammonium dihydrogen 

phosphate, connected to an alternating electric potential 

which causes the plane polarized light to become alternately 

left and right circularly polarized light. 
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Plane polarized light passing through an optically 

active medium corresponds to two equally superimposed right 

and left circularly polarized components (Figure 2) designat­

ed by the letters D and L. Therefore we will have to consid­

er two indices of refraction n_ and n, and also two molar ex-D 1j 

tinction coefficients and These properties need not 

be different but at most wavelengths they are. 

The combination of unegual absorption (circular 

dichroism) and unequal refractive indices (optical rotation) 

in the region in which optically active absorption bands are 

observed is called the Cotton Effect. It results in the 

appearance of an "anomalous" optical rotatory dispersion 

curve and in the appearance of a positive or negative 

circular dichroism curve. A positive Cotton Effect is de­

scribed as having the tail of the effect remain positive 

ehile approaching longer wavelengths. 

Specific rotation, as used in this dissertation, is de­

pendent on the magnitude of the rotation caused by the 

optically active sample, the path length, 1, of the light 

through the cell and also upon the concentration, c, of the 

optically active sample in a particular solvent. 

The above terms are related by the following expression: 

[a] = a/lc a = degrees measured 

1 = path length in decimeters 

c = concentration in g/ml 
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figure 2. Cross sections of a non-absorbing optically active 
material showing vibration forms resolved into 
circularly polarized components 
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The circular dichroism, or the difference in molar ex­

tinction coefficients for right and left circularly polarized 

light, is defined as: 

Ae = AA/lc A A = measured absorbance difference 

1 = path length in centimeters 

c = molar concentration 

B. Absolute Configuration and Mechanisms for Racemization 

The designations of absolute configurations are those of 

Piper (1) and redefined by Jensen (2) . The structure which 

conforms to a left-handed helix is designated A and the 

mirror image or right-handed helix is designated A. The 

helical axis is taken as the threefold rotation axis. The 

isomer of [Co(en)^]3+ which has been designated as D, d or 

(+) in the literature corresponds to the A helix. In this 

dissertation the absolute configurations will be either des­

ignated by the A or C and A or L symbols and {*) or {-) will 

be used to describe the sign of the optical activity and will 

be associated with a particular wavelength. (Positive is a 

clockwise rotation of the plane of polarization as viewed by 

an observer from the source). 

Two earlier mechanisms for molecular rearrangement 

leading to racemization of octahedral complexes that do not 

involve bond rupture have been proposed, one by Ray and Dutt 

(3) and the other by Bailar (4) . The mechanism proposed by 

Bailar was also independently proposed by Gehman (5) and by 
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seiden (6). The Bay and Dutt twist is shown in Figure 3a. 

By holding one of the rings fixed, the motion of the other 

two rings can be described by rotating them 90° in opposite 

directions about an axis perpendicular to their respective 

planes and passing through the metal ion. Throughout the 

twisting process the rings remain rigid, also the 

ligand-metal-ligand bond angles of a ring remain constant at 

approximately 90®. 

In Figure 3b is pictured the Bailar twist as viewed 

down the axis. The racemization process may be described 

by rotating the three metal-ligand bonds (connected by the 

triangle) 120® about the axis in a counterclockwise direc­

tion. In the transition state there is a distortion of the 

chelate rings caused by the contraction of the ligand-metal-

liqand bond angles. If all the ligand-metal-ligand bond 

angles are the saze, in the transition state, the value would 

be 81®%8'. Eisenberg and Ibers (7) completed the crystal 

structure of the trigonal prismatic compound Re ^^6% ̂2 b 

which had chelate ring angles of 81.9®, 81.5® and 80.9®. 

Springer and Sievers <8) recently proposed a new mecha­

nism as shown in Figure 3c. In this taist, as in the Say aad 

Dutt mechanism, one chelate ring is fixed while the other two 

rotate. The difference between the two mechanisms is that 

instead of the two chelate rings rotating past each other in 

their own planes they rotate while continually changing 
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planes. The process can be described as a rotation of 120» 

by each ring about an axis coming out of a face of the 

octahedron (dotted lines, the same being true for the other 

chelate ring). 

The Springer and Sievers twist is a special case of the 

Bailar twist. The difference between the two mechanisms is 

that in the Bailar twist all ligand-metal-ligand bond angles 

are free to change while in the Springer and sievers twist 

particular bond angles within a ring are held constant. The 

Springer and Sievers mechanism produces a transition state 

similar to that of the Bailar twist about the real C3 axis of 

the molecule. 

The actual racemization process of a chelate complex by 

a twist mechanism probably lies somewhere between the ideal 

Bailar mechanism, having all acute ligand-metal-ligand bond 

angles equal to 8io48* in the transition state and that of 

the rigid-ring mechanisms having the angles 90° between one 

arm of the fixed ligand and the rotating ligand, in the tran­

sition state. The preference for either mechanism would 

probably depend on the strength of the ligand-metal bond and 

upon the bulkiness of the substituents on the metal. 

C. Electronic Transition States 

Transition metal coordination complexes are, in general, 

sensitive to ultraviolet or visible light and may react under 

the influence of this light to form new chemical species. 
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Many different photochemical reactions have been observed for 

coordination complexes, some examples include: oxidation-

reduction, ligand exchange, geometrical or optical 

isoaerization or simply decomposition. Until recently, the 

study of inorganic photochemistry has not been a popular 

area; several factors have attributed to this slow progress. 

Among there are: inadequacies in the description of bonding 

and the energy levels in many coordination complexes, the 

sketchy understanding of the thermal chemistry of these 

systems and frequently the coaplaxity of the photochemical 

reactions themselves. 

In order to have a better understanding of the chemical 

processes in coordination complexes a knowledge of the 

bonding and energy levels is desirable. The complexes of 

cobalt (III) contain six metal-liqand sigma bonds and may be 

considered to have octahedral or pseudo-octahedral symmetry. 

In constructing molecular orbitals for an octahedral system, 

nine valence shell orbitals of the metal are to be consid­

ered: six of the orbitals {d(zf), d(x^ - yZ) [having e^ sym­

metry], s [ having a^g symmetry] and p(x), p(%) and p(2) 

fhaviaq ^ syssetry ]| havs their lobes lying along the 

metal-to-liqand axes and are used in the formation of sigma 

bonds. The other three metal orbitals (d (x^), d(%z) and 

d{xz) [having t2g symmetry]) are only available for £i 

bonding if the ligand has suitable gi orbitals. Each of the 
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bonding metal orbitals combine with corresponding ligand 

LC&O's to form six sigma bonding and six antibonding molecu­

lar orbitals. A diagram showing the construction of the mo­

lecular orbitals for a sigma-bonded complex containing 

ligands with no available £i orbitals is given in Figure U. 

In [ Co (en) 2 ]'•*• there is wide separation between the 12^ and 

the eg* orbitals (the strong ligand field situation)• The 

twelve nitrogen lone-pair electrons are used to fill the 

lower six available bonding molecular orbitals , ̂ ~^2g 

and 2-eg orbitals}. The six d-electrons, from the metal, are 

located in the non-bonding t^g orbitals. Because the t^g or­

bitals are filled with all electrons paired, the electronic 

configuration is described by the totally symmetric term 

symbol g. The superscript, one, preceding the letter & 

designates a singlet ground-state fi.e. all the electrons are 

paired, the aultiplicity is equal to 2S + 1? where s is the 

spin quantum number). 

In most strong field d* octahedral complexes, the lowest 

singlet-singlet energy transition from the ground state is 

magnetic dipole allowed, whereas the spin forbidden and many 

of the higher energy ligand field transitions are both mag­

netic and electric dipole forbidden. The criterion used for 

determining if a transition is allowed or forbidden is given 

in the following; 
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a) For electrically allowed transitions 

U|Ô|V contains the or totally symmetric representation, 

where 0 and V represent the initial and final state wavefunc­

tions, respectively. |0| is the electric dipoie operator and 

is a basis for the symmetry representations of x, % and z. 

b) For magnetically allowed transitions 

0|0IÏ contains the or totally symmetric representation, 

where 0 and V have the same definition as above and the oper­

ator |0| belongs to the symmetry representations for Rx, R% 

and R^. 

For a transition to be optically active (i.e. have the 

properties of non-zero "anomalous" optical rotatory 

dispersion and circular dichroism) the product of the inte­

grals of terms in (a) and (b) must be non-zero. Therefore 

each integral has to be non-zero. As an example for 

cobalt (III) in an octahedral field the: *--;a —^ ^ 

iTgig are both electric dipoie forbidden transitions, whereas 

the g + IT, ̂  is magnetically allowed and the i&^g *T 2g 

is magnetically forbidden. In true octahedral complexes 

there is no optical activity-

The actual point group of the [Co(en;^]3* cation is L«. 

and the degeneracies of the lower iT^ ̂  and higher ^'^2g 

tronic states are reduced into (Figure 5): ^ A 2 + and *A^ 

+  I E b  c o m p o n e n t s ,  r e s p e c t i v e l y .  T h e  t r a n s i t i o n  f r o m  t h e  

ground-state to either the lAg, *E^ or ^Ej^ states is allowed 
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Figure 5. Reiuction from 0^ to the lower D3 symmetry for th* 
energy states 
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in both magnetic and electric dipole radiation fields and 

they should have a finite Cotton effect, whereas the i&i 

transition is forbidden, and should have zero effect. 

If circularly polarized light is passed along the C g 

axis of the [CoCen)^ ion, in the crystalline structure 

2[Co (en) 2 1 (Clj) •NaCl^ôHjO, only those transitions with E sym­

metry are allowed (9). By comparing the crystal and solution 

spectra (Figure 6) of the complex it is clear that; 

a) ->• is at lower energy than *^2 

b )  1 - y  g i v e s  a  p o s i t i v e  C o t t o n  e f f e c t .  

The above results have led to a spectroscopic criterion for 

inferring absolute configurations; (•) 5890A-[Co (en)^ ]'"*• has 

the A-configuration (Figure 7) from X-ray analysis (10) and 

•> in this complex gives a positive Cotton effect. 

Conseguently, if an E transition has a positive Cotton 

effect for the dihedral d' or d* complexes it is assumed to 

have the a absolute configuration. This criterion applies to 

all cases where the configurations have been confirmed. 

D. History 

1. Thermal racemization 

LeMay and Bailar (11) reported the solid-state 

racemization of l-cis-FCr(en)^Cl^1C1*H^0. They studied both 

the dehydration and racemization processes of this complex. 

They concluded that the racemization can be interpreted in 

terms of an aguation-anation pathway. The samples were 
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Figure 6. Splitting of low energy band for D-[Co {en)^ P"*": 
{ ) absorption; ( ) circular dichroism 
in solution (inner scale); circular 
dichroism in oriented crystal (outer scale) 
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(b) (c) 

Figure 7. The absolute configuration of D- r  Co (en)T 3+: 
(a) Arrangement of chelate rings ^ 
(b) Arrangement of nitrogen atoms vi^wei about t= 

threefold axis 
(c) Viewed along the twofold axis 
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heated to the following temperatures: 120, 138, 140, 160 and 

180*0, at a rate of 2-5®/min., a theriorgravimetric instru­

ment was used. It was noted that very little, if any, 

racemization occurred after the initial loss of one aole of 

water/mole of complex present. At each temperature they re­

ported the mass loss was more rapid than racemization. The 

analogous cobalt compound, [ Co (en)^ Cl^ Kl^H^O was found to 

undergo solid-state racemization, also with the loss of a 

mole of water/mole of complex. But after the mass loss had 

ended the compound continued to racemize. ultraviolet 

spectra and elemental analysis verified that no conversion to 

the trans-isomer or decomposition had taken place. When D-

[ Co (en) «H^O was heated to 110®C at a rate of 1®/min. 

one mole of water was evolved/mole of complex. After heating 

to 140-1ft3®C for 18-20 hours the specific rotation was half 

the original value- After heating at 170*0 for 14-16 hours 

the complex was completely racemized. They concluded by 

stating that one should consider the possibility of aguation-

anation pathways for hydrated complexes but this need not be 

the only method. 

Kutal and Bailar (12) have studied the solid-estate 

racemization of (+)-[Co(en)2 ](I)2*nH20, (where x = Cl-, Br-, 

I-, NCS- and n = 0,1). The results of their investigation 

indicated that the hydrated iodide and bromide complexes 

racemize considerably faster than their anhydrous analogs. 
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They attributed the effect to physical modifications of the 

lattice during the dehydration rather than the displacement 

of an ethylenediamine molecule with a water molecule. The 

anhydrous complexes were found to raceaize in the following 

order; I- > Br- > HCS- > C1-. This sequence of anions, for 

the racemization process, follows the expected order for the 

decrease in hydrogen bonding in the complexes. The actual 

mechanism for the racemization was attributed to a twist 

mechanism, which again would be dependent upon the degree of 

hydrogen bonding in the complexes. Host of the kinetic stud­

ies reported were studied at a temperature of 127*0. Ho rate 

constants were reported for the solid-state racemization 

studies. The reasons given for not including any rate ex­

pressions was that they didn't have a suitable hypothesis for 

the mechanism of the reaction. An activation energy of 61 ± 

10 Kcal-5ole-i vas reported for the solution racemization of 

the fCo (en)3 1(1)3 complex. 

Kutal (13) reported that [Co(en)^ loses 96% of 

its water of hydration between 60-90OC, from 

thermogravimetric analyses. The analogous bromide complex 

lost its water of hydration in a sisgle step between 

70-100*0. The chloride complex lost its water of hydration 

in a single step between 101-123*0. He also reported that 

the experimental temperatures were dependent on the particle 

size of the samples, fi.e. the finer samples would lose water 
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at a lower temperature). This same particle size dependence 

was noted in the racemization studies. 

2. I-ray crystal structure 

The crystal structure of the tcis{ethylenediaeine)-

cobalt(III) ion has been reported by several investigators, 

the results of their work is presented below. 

The structure of tris fethylenediamine)cobalt(III)-

chloride monohydrate, completed by Iwata, Nakatzu and Saito 

(14), belongs to the tetragonal crystal class having a = b = 

9.682 ± 0.002A, ç = 16.287 ± 0.002A; density (measured; = 

1.585 g-cm-3; Z = 4; volume = 1527A3 and space group £422^2. 

The structure of tris(ethylenediamine)cobalt(III) bromide 

monohydrate, completed by Nakatsu (15), belongs to the 

tetragonal crystal class having a = b = 9.95 ± 0.03A, ç = 

16.73 t 0.05&; density (measured) = 1.971 g-cm-3; Z = 4; 

voluse = 1656*3 an A space group P4w2. 2 or 24-2.2. 

k preliminary study, by Kutal and Bailar (12), of 

tris(ethylenediamine)cobalt(III)iodide monohydrate indicated 

the crystal belonged to the orthorhombic crystal class with a 

= 8.44A, b = 18.95A and ç = 11.28A; density (measured) = 2.32 

g-cm-3; Z = 4; volume = and space group P2-j 2i 2i. 

3. Uitra2iolat_2hgtgl2gis 

The energy gained by a molecule when it absorbs a light 

guantum is given by Bohr's eguation: 

A E = hv 
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where h is Planck's constant and v is the frequency (sec-*) 

of the radiation. The efficiency of a photochemical process, 

i.e. the quantum yield ($) is defined as: 

$ = t of molecules undergoing that process . 
# of photons absorbed by the reactant 

When the products of the primary chemical process are 

radicals or other unstable compounds, they may undergo sec­

ondary thermal reactions. In these cases, the experimentally 

measured quantum yield may be either higher (owing to chain 

reactions) or lover (owing to a cage effect or other back re­

actions) than the primary yield. 

Photoactivation is the first process involved in a 

photochemical sequence: 

& + hv A* 

The electronically excited molecules so obtained must lose 

their excess energy in order to place themselves in equilib­

rium with their surrounding environment. This deactivation 

of the excited molecule is achieved through either chemical 

or physical processes. The physical deactivating processes 

may be subdivided into radiative and non-radiative; the 

latter ones include first order processes (unimolecular 

radiationless transitions) and second order processes 

(bimolecular quenchings) ; 

A* A *• hv radiative deactivation 

A* ̂  & + heat radiationless deactivation 

A* + Q A + Q* bimolecular quenching. 
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A radiatioaless transition is a uninolecular process in 

which the energy difference between the initial and final 

states eventually appears as heat in the surrounding medium. 

This process essentially consists of an isoenergetic conver­

sion of the electronic energy in an upper state into vibra­

tional energy in a lower state of the same molecule, followed 

by the dispersion of the excess vibrational energy of the 

lower state into the surrounding medium. 

Bimolecular quenching is an intermolecular transfer of 

energy from a donor (D) to an acceptor (A) molecule: 

D» + k ̂  D * K*. 

The energy transfer between the donor and acceptor nay occur 

by various mechanisms: one being the case of emission from D* 

and re-absorption by A, and another, the intramolecular 

transfer which occurs when D* and A associate to give a 

setastable Goaplex that dissociates into D and A*. 

All studies of the photoreduction of cobalt(III) com­

plexes have been carried out in acidic solution; the long 

lifetimes of cobalt(II) ammines in basic solutions lead to 

complicated reactions because of the easy reoxidation of 

anine-coordinated cobait(II; to the correspoudisg cobalt <111 ) 

complex. Precipitation of cobalt oxides is another 

complicating factor under basic conditions. 

The photochemical behavior of cobalt(III) complexes in 

aqueous solution is characterized by the simultaneous 
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photoaquation and photoredox decomposition reactions. From a 

kinetic point of view, most of the cobalt(III) complexes are 

rather inert. When considering redox reactions it should be 

noted that in aqueous solutions containing no coaplexing 

agents cobalt(III) is very unstable with respect to the re­

duction to cobalt(II): 

[Co(H20)g]3+ • e- ̂  [Co (H^O) EO = 1.93 v (16). 

The stability of cobalt(III) is greatly enhanced upon 

complexation with suitable ligands, as shown by the values of 

the redox potentials for the following reactions: 

[Co(ox)^p- + e- -i- [Co(ox) EO = 0.57 v (17) 

i;Co(HH^)g ]3++ e- [Co(NH^)g]2+ go = 0.06 v (18) 

[Co (en) 2 + e- ̂  [Coten)^]^* E° = -0.26 v (18). 

It should be remembered that cobalt(II) is a labile d^ system 

and thus its complexes undergo rapid dissociation in acid so­

lution* 

An investigation of the photochemical decomposition of 

the [Co (en) glX 2 complexes, in the solid state, (X = F-, Cl-, 

Br- and I—) was carried out by Klein, Moeller and Ward (19). 

They observed that radiation of wavelength 2537A was strongly 

reactive, while radiation of saveleugtu 3650A or longer did 

not cause any change in the complex. Polarographic analysis, 

spectrophotometric studies, magnetic susceptibility measure­

ments, infrared spectra and mass spectrometer studies were 

performed in order to clarify the nature of the photolysis 
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products. The presence of cobalt (II) in the photolyzed solid 

compound showed that some oxidation-reduction process involv­

ing the central metal atom had to occur. Ammonia was the 

only gaseous product identified, and chemical analysis indi­

cated that two molecules of ammonia were eliminated for each 

atom of cobalt reduced. The lack of evidence for Cl or Cl2 

and the presence of three chloride ions per cobalt(II) atom 

after photolysis of [Co(en)^ KCl)^ suggested that halide 

oxidation was not involved in the photolysis reaction. Quan­

titative analysis of the photolysis product indicated that it 

contained a 1:1 ratio of Co(III): Co(II). The irradiations 

were carried out for a 20 hour time period. The cobalt(II) 

was present as tetracoordinated anion, while the cobalt(III) 

was present as an unidentified yellow complex, different from 

the initial [Co(en) 2](C1) They concluded that irradiation 

probably caused the formation of a cobalt(III) structure 

linked by polyamine condensation products of ethylenediamine. 

In the same paper Klein, et al. (19) also reported stud­

ies on the photochemical behavior of other cobalt amine com­

plexes in the solid-state. On ultraviolet irradiation 

[Co (pn)2 1 (Ci)^ Cpn = î,2-diaainopropane) was found to change 

its color from orange to green, with formation of cobalt (II) 

species. [Co(HH ) ](C1) exhibited a similar behavior. The 
3 6 3 

order of photosensitivity, based on the amount of cobalt (II) 

formed, was [Co(NH ) ](C1) > [Co(en) ](C1) > [Co(pn) ]-
Jo j 3 3 3 
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(Cl)^ . A more recent (20) investigation on [Co (NH^)^ ] (Cl)^ 

and [ Co (en) 2 1 (Cl) 2 showed that the amount of cobalt (II) 

formed increased with the duration of irradiation; kinetic 

calculations indicated a very complicated reaction mechanism 

was involved. In a later work Klein and Holler (21) reported 

the photolysis of aqueous solutions of [Co(en) ̂](Cl)^ gave 

different products than those in the solid state. They ob­

served the production of a photosensitive 

cobalt (III)-ethylenediaaine intermediate, ammonia, 

formaldehyde and cobalt(II). The quantitative analyses were 

not sufficiently precise to exclude the possibility of other 

photolysis products. 

Taylor and Hoeller (22) studied the ultraviolet 

photolysis of tris(propylenediamine)cobalt(III)chloride and 

tris(butvlenediamine)cobalt(III)chloride in an acid medium. 

The major products of the decomposition reactions were 

cobalt(II) and ammonia. In addition for the propylenediamine 

complex, formaldehyde and ethylamine were formed and for the 

butylenediamine (bn) complex acetaldehyde and ethylamine were 

the additional products. (The butylenediamine complex was 

prepared from 2,3-diaainobutane). 

Quantum yields for the reduction of cobalt(III) amines 

discussed are given below (at 25374): 
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Compound Quantum yield 

[Co (en) g]:* 

[Co{pn) g]** 

[Co(bn) ̂]3+ 

0.07 

0.11 

0 . 1 8  

Spees and Adamson (2 3) reported no evidence for any 

photoracemization of [Co (en) ̂ 1 (Cl) 3 using white light. 

4. Gamma-ray radiolvsis 

On irradiation with Gamma-rays, from a *0Co source in 

acid solution, the aquopentaammine and hexaammine complexes 

of cobalt(III) decompose to give cobalt (II) and nitrogen 

(24). The reaction is thought to involve an attack on the 

complexes by OH radicals, catalyzed by cobalt(II). 

Neokladnova and Shagisultanova (25) have studied the 

gamma-ray radiolysis of [Co (en)^ ] (Cl)^ in aqueous solutions. 

The solutions were subjected to radiation from a *oco source 

ïith the total dose varying from 2500 to 300.000 s. The so­

lutions became alkaline and the precipitation of hydroxide 

occurred. The color of the solution turned red during the 

irradiation. They attribute this color change initially with 

aquation and subsequently with the formation of products of 

more extensive hydrolysis. It is known that the binuclear 

tetraethylenediamine complex has a ruby-red color. They give 

no quantitative or qualitative data concerning any products 

that were formed in the radiolysis process. 
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II. EXPERIMENTAL 

K. Materials 

1. Water 

All water used in these experiments was tap distilled 

water which had been redistilled from alkaline permanganate. 

2. Cobalt metal 

Cobalt metal was obtained from the Analytical Department 

having a purity greater than 99 percent. 

3. AlPgfegl 

Absolute alcohol was obtained from the warren and 

Douglas Company. 

4. Other reagents 

All other chemicals were reagent grade and were obtained 

from the Baker Chemical Company or Eastman Chemical Company. 

B. Equipment 

*• Spectropolarisater and cells 

The optical rotation spectra for this work were obtained 

with a Jasco Optical Rotatory Dispersion Recorder with 

Circular Dichroism attachment. Model ORD/UV-5. The cells 

used are made of fused quartz with a path length of one 

centimeter. 

2. Spectrophotometer and cells 

07-Visible spectra were obtained using a Cary Model 1U 

spectrophotometer. The cells used were made of fused quartz 

with a one centimeter path length, obtained from the Beckman 
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Company. 

3. iR_^e£trofihot2 meter 

Infrared spectra were obtained using a Beckman Model 12 

IB spectrophotometer. Spectra were obtained with KBr discs. 

4. NBR spectrometer 

Nuclear magnetic resonance spectra were obtained on a 

Hitachi Perkin-Elmer R-20B High Resolution spectrometer or a 

Varian Model A-60 spectrometer. 

5. Mass spectrometers 

Low resolution mass spectra were recorded on a 

laboratory-built mass spectrometer (26). 

High resolution mass spectra were obtained using the 

MS902 manufactured by AEI. 

6. Thermoaravimetric analyses 

TGA curves were obtained using a Dupont 950 

Thermcgrarcsetric Analyzer «fith a constant flow of dry nitro­

gen. 

7. X-rav crystal structure apparatus 

Precession photographs were obtained on Kodak Medical X-

ray film using a Nonius precession camera. Data were col­

lected using Ho K^ (Û.7iô7a) x-rays. k Hiiger-Watts four-

circle diffractometec equipped with scintillation counter and 

using Zr-filtered No (0.71074) radiation was used in data 

collection. 
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8. X-ray raceaization and sample holder 

Ho radiation was used in the irradiation studies. A 

General Electric Model VER225 generator, set at 50 kilovoits 

and 20 ma was used as the power source. Fine powdered 

samples were pressed into a 0.5 in. diameter x 1/8 in, 

aluminum disc, held 1 in. from the X-ray tube and insulated 

on all sides with bakelite. The sample discs were enclosed 

in brass and lead shielding. 

9. Gamma-rav source and sample holder 

Fine powdered samples were placed in 1 in. diameter x 

2-5 in. long polyethylene vials. The vials were lowered down 

a water tight aluminum pipe. The gamma-rays were produced by 

the spent fuel elements used in the Ames Laboratory Research 

Reactor. 

10. UV-photolysis 

The Hayoset PuOtccbesical Reactor, sanufactared by the 

Southern N. E. Ultraviolet Company, was used to irradiate the 

samples. Samples were irradiated with 2537A wavelength light 

in Vycor tubes, 9 mm in diameter and 12 in. long. 

11. Sand bath and sample tubes 

An Arthur A. Thomas TECAM sand bath was used in the 

thermal racemization studies. Sample tubes were made of 

Pyrex glass, 8 mm in diameter and 8 in. long. 
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12. TLD counter and chips 

A TLD Reader Hodel TLP.-5, Eberline Instrument 

Corporation, was used to count the LiF chips. The LiF 

(TLD-100) chips hare dimensions 1/8 x 1/8 x 1/32 inches. 

C. Preparations 

1. Preparation and resolution of tris(ethylenediaaine)-

cobalt fill) ion (21) 

U Coz+ + 12 en + 4 H+ + 0% -> D,L-[Co(en)2 ]3+ + 2 BgO 

A 500 ml filter flask was fitted with a rubber stopper 

carrying an open glass tube extending to the bottom of the 

flask, and 20.4 ml of 88.5, (w/v) ethylenediamine (0.3 mole) 

was added, (The exact composition of the ethylenediamine was 

determined by dilution of a known volume with water and 

titration with standard acid, using methyl orange as the 

indicator). This solution was diluted with 50 ml water; the 

mixture was cooled in ice and 10 =1 concentrated HCl added, 

(an equivalent amount of weaker or stronger acid could be 

used). Cobalt (II) sulfate heptahydrate (28.1 g, 0,1 mole), 

dissolved in 50 ml cold water was then added and finally 

activated charcoal (4 g), A rapid current of air was bubbled 

through the solution for U hrs. At the end of this time the 

pH of the mixture was adjusted by the addition of a few drops 

of either dilute HCl or ethylenediamine into a range 7,0-7.5, 

The mixture was then heated in an evaporating dish on a 

steam bath for 10-15 minutes to complete the reaction, it was 
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cooled and the charcoal filtered off- The charcoal was 

washed with 20 ml of water. Barium-D-tartrate (28.5 g, 0.1 

mole) was added to the mixture and heated on the steam bath 

with good mechanical stirring for about 30 minutes. 

(Barium-D-tartrate was prepared by mixing solutions of 

barium chloride two-hydrate (2U.4 q, 0.1 mole) and D-tartaric 

acid (15 g, 0.1 mole) at 90oc, cooling and then neutralizing 

with ethylenediamine until slightly basic. The crystals were 

separated by filtration and washed with warm water). 

The barium sulfate, which precipitated initially, was 

filtered and washed with a little hot water and the red-

orange filtrate was evaporated to a volume of 60 ml. 

crystallization of the D-[Co (en) ̂  ]Cl-D-tartrate-5-hydrate 

ensues on cooling and is completed by allowing the mixture to 

stand overnight. The crystals were filtered and the filtrate 

reserved for the isolation of the L isomer. The crystals 

were washed with 40% ethanol-water and recrystallized by 

dissolving in 30 ml of hot water followed by cooling to room 

temperature and then in ice- After filtration the crystals 

were washed with 40% ethanol-water, then with absolute 

alcohol, and air dried. Literature (27) [gjSSSOâ = 

+ 102°; found [ a]5890â = + 102°. 

2. £f -D-1 risie t h^lened iâ m4fiei.£oba 1 tiiIÎI_k£2Siâe 
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To about 5 q of D-[ Co (en) ̂ ]Cl-D-tartrate-5-hydrate, 

which had been triturated, was added 10 ml warm concentrated 

hydrobroaic acid (31). The resulting solution was allowed to 

stand for several hours. Dark red crystals, needles or 

tablets, of the acid crystals formed. These were 

recrystallized in hot water and air dried. Literature ( 2 8 )  

[al5890A = » 117°; found [a]5890A = + 117*. 

3. Preparation of D-tris(ethylenediaainelcobaltjllll 

Çhlsriae_i28l 

D-[Co(enÎ2 jBr^ + 3 AgCl ^ B-[Co{enX; ]C1^ + 3 AgBr 

The chloride complex was prepared from the bromide com­

plex through the exchange with silver chloride. To an 

aqueous solution of 3 g of the bromide was added an excess of 

freshly precipitated silver chloride. The mixture was 

vigorously shaken for several minutes and filtered. The 

residue was washed with several portions of water, the 

filtrate was concentrated using a stream of dry air. To 

accelerate the crystallization a few ml of alcohol was added 

to the filtrate. Literature (28) [a]5890A= + 152®; found 

[a15890A = + 151*. 

H. Preparation of p-trjsfethylsaediaaias)cobalt(III) nitrate 

i281 

D-|:co(en)2 IBr^ • 3 AgNO^ 3 AgBr + D-[Co (en)^ ] (NO^ )^ 

A hot solution of silver nitrate (3 mole) was added to 

D-f Co (en) 2 IBr 2 (1 mole) dissolved in a minimum amount of 
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water. The mixture was allowed to cool to room temperature. 

The yellow precipitate of silver bromide was filtered and 

washed with a little water. The filtrate was condensed and 

cooled- The orange-yellow crystals of the nitrate were 

filtered and air dried. Recrystallization was from water. 

Literature (28) [a]5890â = + 132®; found [ a]5890A = • 130°. 

5. Preparation of acetamidine (29)_ 

CHjCCiNH) NH2*HC1 + NaOH -»• CH3C(:NH)NH2 • NaCl + H2O 

By treating a cooled saturated solution of acetamidine 

hydrochloride with an excess of cold, almost saturated 

caustic soda, a colorless oil was obtained. After being 

dried over anhydrous calcium sulfate it can be kept for 

periods of days at -40®C, as a glassy solid without 

appreciable decomposition. The SMR spectrum, in D-water, has 

for the methyl protons a single peak at 2.25 ± «05 ppm. The 

hydrochloride salt, in Dg - D M SO, has the methyl singlet peak 

at 2.25 ± .05 ppm and two broad N-H singlets at 8.76 ± .05 

and 9.31 ± .05 ppm. When NaOH was added to the solution the 

two N-H singlets coalesced into one broad peak at 8.5 ± .1 

ppm. The methyl proton peak did not change. 

Sodium-2,2-dimethyl-2-silapentane-5-sulphonate was used as 

standard in all spectra. 

D. Analysis and Results 

1. Thermogravimetric analyses of tris(ethylenediamine)-

cobalt fill) complexes 
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The thermal gravimetric analyses of the various com­

plexes indicated that there are several points of inflection 

in the curves but very few distinct plateaus, this made iden­

tification of exact mass losses difficult. 

The TGÀ curves for D-[ Co (en)3 ]X3 (where X = Cl-, Br", I-

and NO^") were studied. In Table 1 is given the results of 

the TGA experiments for the various complexes which had not 

been irradiated. 

The TGà curve (Figure 8) for the chloride salt indicates 

there is one water of hydration present. Between 25-245^C 

the sample loses its one water of hydration in several dis­

tinct steps. This could be due to the fast heating rate. 

Between 245-300OC 1.5 ethylenediamine molecules were lost, 

this corresponded to a total mass loss of 27.6%. Between 

300-405®C an additional 1.5 ethylenediamine molecules were 

lost. Between U05-605°C a total mass loss of 76=5% was re­

corded, this corresponded to the additional loss of two 

chlorides. The last chloride came off in the range 

615-910OC, total mass loss 83.8%. Cobalt metal corresponds 

to 16.3% of the complex. The sample was heated at a rate of 

IQo/min. 

The TGA curve (Figure 8) for the bromide complex indi­

cates there were no waters of hydration present. At about 

265° the compound began to lose mass until a mass loss of 

51.0% resulted. This corresponded to a loss of three 
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Table 1. Thermograviinet rie resalts for [CofenigjXg. 
Heating rate = 10°/min 

Temperature Total % Species lost Theoretical % 
(OC) Mass Loss Mass Loss 

X = Chloride*H20 

25-245 5.0 HpO 5.0 
245-300 27.6 + 1.5 en^ 29,7 
300-405 50.1 H2O + 3 eii 54.7 
405-615 76.5 H2° + ^ eii + CI2 74.2 
615-910 83.8 HgO + 3 en + 3 CI 84.5 

X = Bromide 

25-258 0.0 
258-510 51.0 3 en + Br 54.3 
510-860 88.8 3 en + 3 Br 87.7 

X = Iodide 

25-260 0.0 
260-400 28.4 3 en 29.1 
400-460 50.0 3 en + I 49.5 
460-960 90.2 3 en + 3 1 90.5 

X = Nitrate 

25-2 55 0.0 
255-271 13.2 detonates 

1 en = ethylenediamine 
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Figure 8. Thermogravimatric curves for [Co(en)31X3 (where 
X = Cl-, Br-, I- and NO3-. Heating rate = 
100/min 
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ethylenediaaines and one bromide. &t about 500» another mass 

loss began corresponding to the loss of two bromides, with a 

total mass loss of 88.8%. The plateau at 1000® corresponded 

to cobalt metal. Cobalt metal corresponds to 12.3% of the 

complex. The sample was heated at a rate of 10°/min. 

The TGà curve (Figure 8) for the iodide complex indi­

cates there are no waters of hydration present. At about 

250» the compound began to lose mass until a mass loss of 

28.4% resulted. This corresponded to a loss of three 

ethylenedianines. kt about 390» another mass loss began cor­

responding to the loss of one iodide, with a total mass loss 

of 50.0%. At 460» began another mass loss, this appears to 

be a loss of two iodides. The plateau at 1000» corresponded 

to cobalt metal. Cobalt metal corresponds to 9.6% of the 

complex. The sample was heated at a rate of 10»/min. 

The TGà curve (Figure 8) for the nitrate complex indi­

cates there are no waters of hydration present. At about 

270* (mass loss 13.2%) the sample detonated; the heating rate 

was 10»/min. In Table 2 is given the results of the TGA ex­

periments for the irradiated nitrate complexes with heating 

rate egual to 10»/min. 

Other samples of the nitrate complex were heated to 

200*, at a rate of 10»/min., and then at a rate of 0.5»/min. 

between 200-250». At 242» the non-irradiated complex 

detonated. Before detonating the mass loss was 30.7%. 
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Table 2, Thermogravimetric results for [Co(en) ](NO ) . 
Heating rate = 10^/min 

Total % 
Mass Loss 

Deton. Total 
Temp. Exposure 

(MR) 

0 . 0  
13.2 271 

0 . 0  
2ti.5 241 6 1  

0 . 0  
2  3 . 9  239 66 

0 . 0  
16.7 268 54 

0 . 0  
18.7 

0 . 0  
18.3 

265 

260 

104 

147 

0 . 0  
18.5 I OD 

0 . 0  
18 .2  255 217 

Temperature 
(OC) 

Type of 
Radiation 

25-255 
255-271 

25-50 
50-241 

25-50 
50-239 

X-r ays 

X-rays 

25-180 
180-265 

25-50 
50-265 

25-50 
50-260 

25-50 
50-258 

25-40 
40-255 

Gamma-rays 

Gamma-rays 

Gamma-rays 

Gam ma-cays 

Gamma-rays 
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Slower heating rates were not attempted. Figures 9 and 10 

show some of the T6A carves for the irradiated nitrate com­

plex. In Table 4 is given the results of the TGA experi­

ments, for the irradiated nitrate compounds, with heating 

rate egual to 0.5®/ain. between 200-250OC. 

2. Cobalt metal standard (30) 

0.23615 g of high purity cobalt metal was dissolved in 

concentrated HCl. This was then diluted with water to one 

liter giving a cobalt(II) concentration of 0.23615 ag/ml. 

Various aliquots were taken to which was added a total con­

centration of 5% ammonium thiocyanate, and acetone to corre­

spond to 60% of the total volume. The visible absorption 

spectrum was run and at 6230A the absorption noted. In Table 

3 is listed the concentrations used and the absorbances meas­

ured for [Co(SCN) 4]^"» Figure 11 is a plot of the data. 

Table 3. Data used for the Absorbance versus Concentration 
plot of [Co(SCH)^ ]2-

mg Co Absorbance 
10 ml Solution Measured 

0.1134 
0.2247 
0.3401 
0.3778 
0.4723 

0.248 
0.649 
1.038 
1. 196 
1.590 
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Figure 9. Thermogravi.metric curves foe [ Co (en) 3] (NO3) 3. 
Heating rate = 10®/oin 
(a) Non-irradiated complex 
(b) Irradiated with gamma-rays, total exposure 147 MR 
(c) Exposed to x-rays, total exposure 66,4 MR 
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Figure 10. Thermogravometric curves for [ Co (en) 3 ] (NO3) 3. 
Heating rate = 10°/ain. Between 200-250° heating 
rate = O.ljo/ain 
(a) Non-irradiated complex 
(t) Irradiated with gamma-rays, total exposure 5U MB 
(c) Irradiated with gamma-rays, total exposure 147 MR 
(dj Irradiated with X-rays, total exposure 66,4 MR 
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Table 4. Thermogravimetric results for [Co (en) 3] (NO^) 3. 
Heating rate = 10°/min, except between 200-250*0, 
where heating rate = 0.5°/min 

Temp. Total % Species Lost Theor. % Total 
(®C) Mass Loss Mass Loss Exposure 

(MB) 

25-225 0.0 
225-243 30.7 2 en^ 28. 2 0 
243 de tonates 

25-195 0.0 
195-228 32.4 2 en + NHo 32. 2 
228 de tonates 542 

25-190 0.0 
190-230 53.5 3 en + NÛ2 53.2 
230-600 67. 5 3 en • NO- + 2 NO 67. 3 
600-1000 77.4 3 en + NOg + 2 NO + 3/2 O2 78.6 1042 

25-50 0.0 
50-195 7. 2 0.5 en 
195-230 51.2 3 en + NO2 53.2 
230-605 67. 5 3 en + N0« + 2 NO 67.3 
605-1000 76.5 3 en + NO2 + 2 NO + 3/2 °2 78.6 

1000 80. 9 3 en + NO - + 2 HC + 2 0 82.4 663 

len = ethylenediamine 
^Exposed to gamma-rays 
^Exposed to X-rays 
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Figure 11. Absorbance as a function of concentration for 
CCo(SCN)4]2-
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3. Analysis Coc cobaltfll) and cobalt fill) in irradiated 

LÇo(9n) jl(NOj) j (301 

To about 0.02 g of the irradiated nitrate complex was 

added 1 ml of water and 3 drops of concentrated HCl. After 

the sample dissolved, 0.25 g ammonium thiocyanate was added 

and 1 ml water. The solution was diluted to 5 ml with 

acetone. The visible absorption spectrum of the [CoCSCN)^]^-

complex was recorded {Figure 12). The sample was washed into 

Vycor tubes (10 ml total volume) and photolyzed (31) for 8 

hours at 2537A. After this time 1 g ammonium thiocyanate was 

added and the solution diluted to 25 ml with a 60:40 acetone-

water mixture. The visible absorption spectrum was then 

scanned. For the non-irradiated complex the amount of cobalt 

present was 14.1 ± .1% which compares favorably with the the­

oretical value of 13.9%. The results of the analyses, for 

the irradiated samples, are given in Table 5. 

E. Calibration of Radiation Sources and Results 

1. Units 

The Roentgen (R) will be used as the measuring criteria 

in this work. A Roentgen is an exposure of X-radiation or 

gamma-radiation required to produce in air one electrostatic 

unit of charge of either sign per 0.001293 g of air at stan­

dard temperature and pressure (32). The Roentgen is a meas­

ure of the ability of a photon beam to produce ionization in 
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figure 12. Visible absorption spectrum before and after 
UV-photolysis 
(a) Before [ Co (en) (NG^) , 
( h) Aft€r_[ Co (SCN) ̂  ]z-
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Table 5. Formation of cobalt(II) in irradiated samples of 
L-[Co(en) gjtNOg) ̂  

Sample mg Co2+ mg Co X Co Mean Exposure 
(initial) (total) ( % )  (MR) 

1 0.070 3.34 3.00 
2 0. 075 3. 09 2. 43 2.58 ± 0.37 541 
3 0.069 3.00 2.30 

1 0. 115 2. 84 4.08 
2 0. 120 3.00 4.00 4.05 ± 0.04 1041 
3 0. 122 3. 00 4.07 

1 0. 179 3. 45 5.19 
2 0. 163 2.94 5.54 5.41 ± 0.19 1471 
3 0. 163 2. 96 5. 51 

1 0. 189 3. 06 6. 18 
2 0. 206 3. 23 6.38 6.25 ± 0.11 1851 
3 0. 195 3. 15 6. 19 

1 0. 255 3. 16 8.07 
2 0. 243 2. 85 8. 53 8. 19 ± 0.30 2171 
3 0. 240 3.01 7.97 

1 0.220 2. 53 9.69 
2 0.245 2.55 9.61 8.89 ± 0.65 612 
3 0.230 2. 75 a.  36 

1 0.258 2. 50 10.32 
2 0.290 2. 83 10.25 10.29 ±0.04 662 
3 0.274 2. 66 10.30 

1 Exposed to gamma-rays 
^Exposed to X-rays 
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air. The Roentgen can be used directly only in discussing 

the amount of ionization produced in a finite volume of air. 

2. X-ray facility 

Thermoluainescence dosimetry (33) using Li? (TLD-lOO) 

crystals, was used to calibrate the X-ray source. When a 

sample is bombarded by X-rays it absorbs energy and some of 

this energy is stored in metastable energy states. This en­

ergy can be released by heating the sample and by measuring 

the light given off. The light given off is measured by a 

photomultiplier tube in a commercial instrument. The meas­

urement is then compared with known standard curves from 

which the experimental exposure can be determined. Four LiF 

chips were placed in the sample holder at one time. This 

covered most of the surface area seen by the samples. The 

results of the calibration indicate that the chips were ex­

posed to 0=36 ± 0.04 HR/hr- (H = mega). 

3. Gamma-ray facility 

Fricke dosimetry (34), FeSO^ in H2 SO^ , was used to 

calibrate the gamma-ray source. The method compares the 

optical density of the iron (III) ion concentration of an 

irradiated solution to a non-irradiated solutioB, at 3050A. 

The exposure rate (R) is given by the empirical relation: 

E(B/hr) = 109(As - Ab)/(e*Y*t) 

where e is the molar extinction coefficient (2174 1-

mole-i-cm—1 at 23.7oc) ; Y is the iron (III) sulfate yield 



www.manaraa.com

48 

(about 16 aiccoaolar/l000 R over the range 4-4000 KR); t is 

in hours; Ag is the absorbante of the sample and Ab the 

absorbance of the blank. The calibration of the beam «as 

performed once during the irradiation period. This calibra­

tion point «as then used to adjust a known measured decay 

curve for the fuel element fission product gamma-ray. The 

calibration work was performed by the Reactor Division per­

sonnel. The data and results of these experiments are given 

in Table 6. 

Table 6. Calibration of gamma-ray facility 

Date Rate Total Exposure 
(HR/hr.) (HR) 

Hay 23, 72 0.368 0 
May 30, 72 0.318 54 
June 6, 72 0.275 10ii 

June 13, 72 0.2381 147 
June 20, 72 0.208 185 
June 27, 72 0.182 217 

iPricke calibration point 
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p. Procedures 

powdered samples of the various compounds were weighed 

on an analytical balance and then placed in glass tubes. In 

the tops of the glass tubes was placed a plug of glass wool, 

to prevent sand from entering the tubes. The sample tubes 

were then inserted into the sand bath, as quickly as possi­

ble. At appropriate time intervals a tube would be removed 

from the sand bath and immersed in a beaker of ice water. 

The sample was then dissolved in water and diluted to volume. 

The OBD and UV-Visible spectra were obtained. The specific 

rotation was calculated for each sample. The measured rota­

tion corresponded to the difference between the peak at 5200& 

and the valley at 4680A. 

2. X-rav racemization 

Sasplss cf the rarieas co»?ouads sere triturated to a 

fine powder and then pressed into their respective sample 

discs. The discs were then mounted in the sample holder one 

inch from the exit of the X-ray beam. At appropriate time 

intervals the X-ray beam was shut off and the sample removed. 

The samples were then weighed, dissolved in water aad 

diluted to volume. The spectra were recorded as in (1) 

above. 
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3. Gaama-rav racemization 

Samples of the nitrate salt vere placed in polyethylene 

tubing, heat sealed at both ends. These tubes were then 

placed in a polyethylene vial equipped with screw cap. The 

vial vas placed in an aluminum holder which was then lowered 

down a water-tight aluminum pipe, located in the pool at the 

Ames Laboratory Research Reactor. At appropriate time inter­

vals a sample was withdrawn and spectra recorded as in (1) 

above. 

After a sample of the nitrate salt had been irradiated 

with X-rays it was placed in a double chambered glass bulb. 

The chamber in which the sample was placed was equipped with 

a rubber septum covered with a layer of mercury. The entire 

bulb was evacuated, each chamber was then closed and one ml 

^ f —a t ̂ V» «VAA i m ̂  a ̂  /rlh t Im A v» KWAV» ^ k A 

sample. After the sample had dissolved, the stopcock 

separating the two chambers, was opened allowing any gases to 

expand into the second chamber. The sample chamber was then 

closed off and the bulb attached to the mass spectrometer for 

analysis. 

5. Crystal structure of P-rco(en) ̂ l 

For data collection, a crystal having approximate dimen­

sions 0.07 X 0.07 X 0.08 mm along the a, b, ç crystal axes, 

respectively, was mounted with the 0.08-nm axis along the 
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spindle axis. The final alignment of the crystal vas then 

adjusted by rotation through a fev decrees before commencing 

to collect data to eliminate the occurrence of multiple 

reflections, h right-handed coordinate system vas used. 

Data were collected at room temperature (22 t 3®C) 

utilizing a Hilger-Watts four circle difftactometer equipped 

with scintillation counter and using Zr-filtered Mo (A = 

0.7107â) radiation. Within a tvo theta sphere of 60° all 

data in one octant vas recorded using the stationary crystal-

stationary counter technique vith a take-off angle of 6®. 

Peak height data were converted to integrated intensities by 

the method of Alexander and Smith (35). Stationary crystal-

stationary counter background counts of 5 sec. were taken at 

0 = ± (0.25 + O,O10jj^) and peak heights vere measured 

for 10. sec. A total of 2647 reflections vere measured in 

this way. 

As a general check on electronic and crystal stability 

the intensities of three standard reflections (10,00, 060, 

006) vere remeasured periodically during the data collection 

period. These reflections did not change significantly and 

therefore no corrections vere made. 

The intensity data vere corrected for Lorentz-

polarization effects. The absorption coefficient,y , is 10.4 

cm—». The maximum and minimum transmission factors are 92.9% 

and 92.3%, respectively. These vere calculated by using the 
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minimum and maximum path lengths. Because the transmission 

factors are large, no absorption corrections were made. Of 

the 2647 measured intensities, 1943 were found to be above 

background (i.e. greater than three times the standard error 

based on counting statistics) and, therefore, considered as 

observed. The standard errors in the intensities and the ob­

served structure functions were calculated by the method of 

Williams and Bundle (36) and are given by 

a, = [ TC + BG + (.05TC)2 • (.05BG)Z]1/Z 

ap = (lp)-i/2[(I + - 11/%]. 

Ihere I was the measured intensity equal to TC - BG; TC was 

the total counts; 3G was the background counts; and was 

the Lorentz-polarization. The function for is based on 

the finite difference method. The unobserved reflections were 

not used in the solution and refinement of the derived struc­

ture. 

The unit cell parameters at 22 t 3®C are: a = 14.570 ± 

0.017a, b = 12.607 ± 0.0165, and c = 8.756 ± 0.003&. These 

parameters and their standard deviations were obtained by 

centering the diffractometer on independent reflections whose 

maxima were determined by left-right, top-bottom beam split­

ting on a previously aligned Hilger-Hatts four-circle 

dif fractometer (Ho radiation, X = 0.7107A), A calculated 

density of 1.756 g/cm^ for four molecules per unit cell 
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agrees reasonably well with the observed density of 1.773 

g/cm3 obtained by flotation techniques. 
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III. TREATMENT OF DATA 

A. Thermal Raceaization 

The rate constant reported in this investigation, for 

the racenization process, which presumably is a first order 

process, was derived by the following: 

For the reaction: 

D I L 

The rate is given by; 

(d[Dl/dt) = k[L] - k[D] 

the brackets designate the fraction of the sample in the 

indicated form 

and 

[a] = ([D] - [L])[aj^] 

[aj = ([D^] -

[1] = [D] + [L] 

therefore 

(d[D]/dt) = {k[1 - D] - k[D]}[ap] 

= Ck[1 - 2D]}[a^] 

integrating from t = 0 to t and from to D 

In{[ 1 - 2D]/[1 - 2 DQ ]} = - 2kt 

or 

and 

]} = - 2kt 

k = - 1/(2t)*ln{[a]/[ a^]) 
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All raceaization data were fitted by the least squares 

method, k computer program was used to facilitate data proc­

essing. 

The results of the thermal racemization studies are 

listed in Table 7. Absorption spectra for the various com­

plexes indicated that there was no decomposition taking place 

during the thermal heating. Figure 13 shows some typical 

raceaization results for the various complexes. Figure 14 

shows the results of the rate constants plotted against one 

over the absolute teaperature. 

B. crystal structure of D-[Co(en)^ 

1. Precession photographs 

Hicroscopic examination of the crystals revealed that 

they were either triangular prisms or needles with sharply 

defined faces. A needle crystal was selected for diffraction 

work. Prssiainary precession photographs exhibited agg syg-

metry, as did the triangular prisms, indicating an 

orthorhombic space group. The conditions limiting the possi­

ble reflections were hOO, extinct if h = 2n + 1; OkO, extinct 

if k = 2n + 1; and 001, extinct if 1 = 2n + 1. These condi­

tions uniquely determine the space group P2^ 2^ 2^. 

2. Patterson and electron density maps 

A three-dimensional Patterson synthesis was computed 

from the data and careful analysis revealed the position of 

the cobalt atom. A pseudo extinction of the type hk^, h + 1 
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Table 7. Thermal racemization results for [Co(en)2]X3 
complexes 

Temperature Number of Rate Constant Half-life 
(OC) Experiments (min-i) (min) 

X = Cbloride+HgO 

170 3 (1.3 ± . 3)x 10-3 530 ± ^20 
186 5 (1 .6 ± .U) xlO-2 44 ± 5 
204 3 (1 .6 ± .3) xlO-2 44 ± ? 
214 3 (5.5 ± . 1) xlO-2 13 ± 2 

A'ù = 29.7 ± 4.5 Kcal-mole-i 

X = Bromide 

140 1 (8.0 ± . 1) X 10-5 8 500 ± 460 
158 3 (1.6 ± . 5) xlO-* 43 00 ± 1200 
183 4 (9.0 ± .1)x10-3 77 ± 10 
194 5 (3.9 I . 5) x10-3 180 ± 20 
204 4 (1.3 ± .2)xlO-2 53 ± 6 

AH = 33.2 ± 3. 6 Kcal-mole-i 

X = Iodide 

140 1 (2.5 ± .1)xlO-4 27 00 ± 54 
158 3 (3.0 ± .2)x10-3 230 + 16 
169 5 (1.7 ± .2)x10-3 410 ± 38 
135 5 (1.5 + , 5} X 10-2 48 I 1 Ô 

AH : = 29.1 ± 4. 6 Kca1-mole-i 

X = Nitrate 

218 5 (2.3 ± . 5)x10-4 3000 ± 640 
224 3 (6.0 ± . 1)x10-» 1200 ± 170 
233 3 (6.5 ± .1)xlû-3 110 ± 17 

AH = 108.9 ±5.8 Kcal-mole-i 
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= 2n + 1 occurs and indicative of pseudo B centering. This 

was interpreted to mean that the cobalt atom was midway be­

tween the screw axes along x and at % = 1/4, z = 3/4. The 

cobalts* location cansed a pseudo-twofold axis in the z di­

rection in the electron density map. This pseudo-axis 

disappeared after careful placement of the other atoms. 

These positions were then refined by full matrix least-

squares techniques with isotropic thermal parameters to a 

conventional discrepancy factor of 8 = Z||Fq| - |Fg| l/ZIIg I 

0.108 and a weighted R factor of toR = [Zw (I Pq I - IF^,!)^/-

ZwlF^ I 2 ]i/z = 0.134. The scattering factors were those of 

Doyle and Turner (37). 

a difference electron density map at this stage showed 

that all the non-hydrogen atoms had been accounted for, but 

that some anisotropic motion was evident. The anisotropic 

rafiaezent vas carried cut in tuo steps= First, the complex 

was varied and then the nitrates with the cobalt atom held 

common in both refinements. This was done because of the 

large number of variables in the total molecule. After a fe 

cycles the final values of R and wR of 0.085 and 0.101, re­

spectively, were obtained. Modifications for the real and 

imaginary parts of the anomalous dispersion, taken from 

Cromer and Liberman (38), were now added. The final values 

of R and wR of 0.084 and 0.100, respectively, were obtained. 

a final electron density difference map shows no peaks highe 
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than 0.5e/A3. & final statistical analysis of the P and F 
0 c 

values as a function of the indices, the scattering angle and 

the magnitude of shoved no unusual trends and suggests 

that the relative weighting scheme used is a reasonable one. 

In Table 8 are listed the final values of the positional 

parameters and in Table 9 the final values for the anisotrop­

ic temperature factors, along with their standard deviations 

as derived from the inverse matrix. In Table 10 are listed 

the values of and Fq in electrons for the 19U3 observed 

reflections. The values of F for the unobserved reflections 
0 

in no case exceeded SoCFQ). In Table 11 are listed the cal­

culated hydrogen positions for the carbon and nitrogen atoms. 

These positional vectors r, whose directions are given by 

the unit vector r, were calculated by means of the following 

equations: 

r = -a(?. + V^) ± b(V«x v^) 

b/a = tan W, a^ + b^ = 1, 

^ = sin-i[sin2Q - (coszgfl - cos $ ) 2}/sin^ $ ]i/2. 

and V^ are unit vectors between the appropriate nitrogen, 

carbon and cobalt atoms. 0 is the Co-N-H or H-C-N bond 

angle, restricted to the tetrahedral angle. $ is the appro­

priate Co-N-C or C-C-N bond angle, y is half the angle be­

tween the hydrogen positions. A distance of 1.036A® and 

I.OSOA® were chosen for the N-H and c-H bond lengths respec­

tively to give the magnitude of the r's. These calculated 
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Table 8. Final positional parameters for D-[ Co (en) ̂  3 (NO 2) 

X/a Vb Z/Ç 

Co 0. 1607 1) 0.2439 (1) 0.7575(1) 
N(1) 0.0787 5) 0. 1229 (5) 0.7300 (1 1) 
N (2) 0.2572 5) 0. 1546(5) 0.7082(9) 
N(3) 0.2503 5) 0.3607(5) 0.7673 (9) 
N (4) 0.0586 6) 0. 3363(6) 0.8209 (9) 
N(5) 0.1743 5) 0.2131 (6) 0.9765 (9) 
N{6) 0.1363 5) 0. 2745(5) 0.5394 (8) 
N(7) 0.1492 5) 0.6019(6) 0.6455 (9) 
N(8) 0.2059 6) 0. 8853(7) 0.8021 (10) 
N(9) 0.5059 6) • 0.5172(6) 0.9032 (1 1) 
C(1) 0.3531 5) 0. 2122(7) 0.7408 (13) 
C{2) 0.3361 6) 0. 326 8(7) 0.6927 (13) 
C(3) 0.0716 7) 0.3620(8) 0.9824 (1 1) 
C (4) 0.1020 7) 0.2647(8) 1.0657 (1 1) 
C(5) 0.0553 7) 0.208S (6) 0.4936 (1 3) 
C(6) 0.0620 7) 0. 1049 (8) 0.5654 (1 1) 
0(1) 0. 1221 5) 0. 5627 (5) 0.7664 (8) 
0(2) 0.1040 5) 0. 6739(5) 0.5827 (9) 
0(3) 0.2210 5) 0. 5686 (7) 0.5883 (10) 
0(4) 0.2343 5) 0.9556 (5) 0.8915(8) 
0(5) 0.2140 7) 0.79 14(6) 0. 8405(10) 
0(6) 0. 1705 7) 0.9103 (6) 0.6789 (9) 
0(7) 0.4365 7) 0. 551 1 (7) 0.8368 (1 1) 
0(8) 0.5645 8) 0. 4661 (7) 0.8343(1 3) 
0(9) 0. 5169 ( 6) 0.5423 (?) 1,0 399 (10; 

^Numbers in parentheses are standard deviations in the last 
digit of the parameter 
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Table 9. Final anisotropic thermal parameters (x 1-0®) for 
D-£Co(en)3 ](N02)3 1,% 

Gil G22 B33 3 12 213 ^23 

Co 322(4) 428 (5) 1064 (12) 10(4) -12(7) 41 (10) 
N(1) 408(33) 557 (45) 1 514 (136) -40 (33) 20 (58) 183 (67) 
N(2) 368(30) 489 (39) 1476 (126) -22 (30) -32(51) 74(56) 
N{3) 395(33) 576 (42) 1300 ( 113) 39 (30) 100(59) -153 (66) 
N(4) 405(35) 547 (48) 1531 (1 17) 28 (36) 11(58) 187 (62) 
N(5) 446(37) 510(4 1) 1400 (103) 59 (34) -169 (53) 118 (57) 
N(6) 431 (35) 488 (44) 1102 (95) -53 (30) -143(46) 147 (53) 
N(7) 345(35) 677(47) 1675 (133) — 48 (37) -2 1(61) 54 (67) 
N (8) 629 (50) 707 (60) 1725 (133) 123 (46) -236 f68) 27 (77) 
N(9) 690 (54) 479 (48) 1750 (136) -39 (43) 8 0(73) 211 (68) 
C(1) 292( 35) 727(53) 181 3(151) 54 (33) -19(75) -145 (91) 
C(2) 380 (41) 554 (52) 2151 (175) -94 (42) 47(79) -192 (78) 
C(3) 474(50) 735 (66) 131 5 (134) 62 (48) 24(72) 19 (76) 
C (4) 665(57) 652 (66) 1377 (121) 74 (53) 186 (73) 214(85) 
C(5) 542(51) 759 (68) 1568 (153) -65 (51) -227(74) 46 (86) 
C(6) 608(55) 724 (64) 1442 (142) 174 (54) -7(79) -73 (86) 
0 (1) 531 (35) 776 (43) 201 1 (12 3) -42 (31) 143(58) 296 (70) 
0(2) 632(39) 667(45) 2059 (117) 66 (37) -144 (61) 276 (64) 
0(3) 511 (37) 1512(83) 1914 (120) 2b 2 (47) 277 (62) 433 (90) 
0 (4) 610 (41) 798 (50) 1636 (1 10) -23 (40) -130(59) 206(64) 
0(5) 1480(83) 542(43) 2880(167) 130 (50) -1078 (101) 20 (74) 
0 (6) 1076 (63) 785 (5 1) 15 28 (58) 2 25 (53) -312(81» 10 3 (64) 
0(7) 1029(61) 847 (60) 2923 (176) 109 (56) -65 1 (9 5) -162 (87) 
0(8) 1084(70) 950 (65) 3824 (230) 86 (62) 727 (113) -383 (110) 
0(9) 8tiU (53) 1054 (63) 1873 (135) 57 (52) -121(74) 80(89) 

iNumfaers in parentheses are standard deviations in the last 
digit of the parameter 
2The form of the anisotropic temperature factor expression is 
expr-fg'ihz + @22%= + gggiz + + Zg^ghl + 2823kl)] 
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lable 10. Observed and calculated structure factors (xlO) 
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Table 11. Calculated positional parameters for hydrogen atoms 

X/a Y/b Z/Ç X/d Y/b Z/Ç 

H (Nia) 0. 0169 0. 1381 0 .7842 H (Cla) 0. 4081 0. 1792 0. 6732 

H (Nib) 0. 1086 0. 0559 0 .7771 H (Clb) 0. 3572 0. 2093 0. 8618 

H(N2a) 0. 2652 Ù. 1342 0 .5936 H (C2a) 0. 3920 0. 376 0 0. 7320 

H (N2b) 0. 2649 0. 0859 0 .7730 H (C2b) 0. 3278 0. 3305 0. 5702 

H (N3a) 0 .  2635 0. 3791 0 .8805 H (C3a) 0. 0075 0. 3895 1. 0300 

H (N3b) 0. 2241 0. '4263 0 .7107 t i  (C3b) 0. 1235 0. 4227 0. 9932 

H {N4a) — « 0029 0. 2964 0 .8070 IJ (C4a) 0. 1290 0. 2869 1. 1761 

H (N4b) c .  0599 0. 4055 0 .7571 H (C4b) 0. 0447 0. 211 1 1. 0778 

H(N5a) 0. 2379 0. 2391 1 .0138 H{C5a} 0. 0545 0. 1998 0. 3710 

H (N5b) 0. 1718 0. 1319 0 .9939 H (C5b) 
- •  
0070 0. 2475 0. 5302 

H(N6a) 0. 1928 0. 2528 0 .4746 H (C6a) 0019 0. 0628 0. 5508 

H (N6b) 0. 1206 0. 3542 0 .5266 H (C6b) 0. 1192 0. 0620 0. 5169 
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positions were put into the least-squares program and after a 

few cycles values of R and u® of 0.074 and 0.086, respective­

ly, were obtained. i fixed isotropic temperature factor of 

5A2 was used for the hydrogen atoms. Because some of the hy­

drogens were ill behaved only their calculated positions are 

reported. 

C. X-ray and Gamma-ray Racemization 

The results of the X-ray and gamma-ray racemization 

studies are given in Table 12. Figure 15 shows the 

irradiation effects on the uv-visible absorption spectrum for 

the nitrate complex. Figure 16 shows the X-ray radiation 

induced racemization of the halide salts. From the visible 

absorption spectrum for these irradiated halide salts no evi­

dence of decomposition was detectable. Figure 17 shows the 

X-ray induced racemization and decomposition of the nitrate 

salt. The slops [ d In {ct/ct^ )/d MR ] ïas (1*05 ± =01)x10~2 mr-i 

and the slope [d ln(1 - Co2 + /cot)/d MR] was (0.16 ± .01) xlO-2 

HR-i, This corresponded to a corrected rate for racemization 

of (4.50 ± .01)i10-3 MR-i. At U680A the X-ray irradiated 

samples differed from the non-irradiated samples by only 8-10 

percent. This corresponded to the value obtained for the 

formation of cobalt(II). The small change in the absorbance 

at 4680A could be caused by either the formation of a new 

cobalt species with similar extinction coefficient, to that 

of the nitrate complex, or to the formation of another spe-
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Table 1/. Results of X-ray and yamma-ray racemization 
studies for [CofenjgjXg 

k Number of Half-life 
(MR- Data Points (min) 

X-rayi 

X = Chloride'H^O 

(1.02 ± -39)x10-2 27 5700 ± 2200 

X = Bromide 

(5. 85 + . 06) x 10-1 23 200 ± 2 0 

X - Iodide 

(9.85 ± . 13) X10-1 6 1 20 ± 16 
(1.08 ± . 18) 6 110 ± 18 
(9. 25 ± .05) X10-1 6 1 30 ± 7 
(9.50 ± .04) xlO-i 27 1 20 ± 5 
(9.85 ± .24)xlO-i mean 120 ± 30 

X = Nitrate^ 

(1.05 ± . 14) XlO-2 6 11000 ± 1400 
(0.90 ± .04)xlO-2 6 130 00 ± 600 
(0.73 ± -21) xlO-2 5 16000 ± 4700 
(0.93 ± .09) xlO-2 103 130 00 ± 1100 
(0.90 ± .03)xlO-2 22 130 00 ± 400 
(0. 91 ± .09) xlO-2 mean* 13000 ± 1200 

Gamma-rays 

(5.46 ± .09)x10-* h (3.16 ± .06)x105 

^Irradiated at 50 Kvolts and a target current of 20 ma. 
The exposure rate was 0.36 MS/hr 
2The k,*s are not corrected roc decomposition 
^The above three sets of points plotted as one set 
•Value for last two sets 
^The average exposure rate was 0.24 MR/hr 
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des in minor amounts. The voltage of the X-ray unit was 50 

kvolts and the target (anode) current vas 20 ma. Figure 18 

shows the gamma-ray induced racemization and decomposition of 

the nitrate salt. The slope [d ln(c*/cto)/d BR] was (1.01 ± 

•OU)*10-' MR-& and the slope [d ln(1 - Co2+/Co^)/d HR] was 

(3.65 ± .24)x10-* MR-i. This corresponded to a corrected 

rate for racemization of (3.20 ± .25)x10-* HR-i. Within the 

error of measurement, the absorption, at 4680A, for the dif­

ferent irradiations was thé same. 

After a czsple of the nitrate complex had been 

irradiated with X-rays, it was noticed that upon dissolving 

the sample, some gas was evolved. & mass spectrum of the 

vapors above a frozen solution of the sample revealed one 

peak. This was due to hydrogen. After warming the sample to 

room temperature, three peaks were detected by the mass spec­

trometer: masses 58, %3 and 15. A high resolution sass 

spectrum was then obtained and the results are given in Table 

13. 
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Figure 18. Loss of optical activity ani decomposition of 
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Table 13. High resolution mass spectrum of unknown gas* 

Experimental Species Exact Deviation 
Hass Hass 

58.054*84 €296*2 58.053095 - 0.0014 
43.028138 Ce3% 43.029621 • 0.0014 
15.029359 CH3 15.023474 - 0.0059 

^Obtained from X-ray irradiation of [Co(en)^ ](NO3y 
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IV. DISCUSSION 

A. Thermal Racemization 

From the results given in Table 7 it can be seen that 

the A H for racemization, of the halide salts, is the same 

within experimental error. Kutal and Bailar (12) reported 

that hydrated halides racemized in the following order I~ > 

Br- > C1-. The AH for racemization of the iodide salt was 

the lowest, the bromide had a AH about four Kcal-mole-i 

higher, but for the chloride, the AH for racemization lowered 

to a value about equal to the iodide. From the T6A analyses, 

the chloride salt was monohydrated, whereas the iodide, 

bromide and nitrate salts were anhydrous. It is therefore 

possible that the water of hydration, for the chloride, is 

playing some part in the racemization process- The AH for 

racemization of the nitrate complex is almost a factor of 

four greater than that of the halide salts. 

The mechanism proposed for the solid-state racemization 

is that of a twisting mechanism, similar to those shown in 

Figure 3. The twisting mechanism would also explain the high 

AH of racemization for the nitrate complex. Because the 

nitrate group is composed of four atoms, as compared to one 

for the halides, it would hinder a twisting mechanism greater 

than would the halides. Also from the crystal structure 

results, to be discussed in the next section, it was shown 
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that there vas considerable hydrogen bonding between the 

nitrate groups and the complex. This close interaction would 

prevent the molecule from undergoing faster thermal 

racemization, by a twist mechanism, as compared to the halide 

salts. ~ 

B. Crystal Structure of D-[Co(en)^ ](NO^)^ 

Figure 19, an OBTEP drawing (39) , illustrates the pack­

ing in the unit cell. (The fine lines represent the closest 

approach of the oxygen atoms to the hydrogen atoms attached 

to nitrogen atoms of the complex, out to 2.5A) • Table 14 

lists some of the important interatomic distances outside the 

complex ion, as calculated by ORPFE (40). Figures 20 and 21 

show the directions of vibration of the atoms refined 

aaisotropically. Figure 22 shows a stereoscopic view of the 

complex with hydrogen atoms included. 

Only one type of hydrogen bond is conceivable# that is 

the N-H...0 bond. This occurs between the amines of the com­

plex and the oxygen of the nitrates. The closest B...0 

distance is 2.913A. This agrees with the 2.911 reported by 

Iwata, Hakatzu and saito for the H-R...0 bond length in the 

chloride structure. They also report the shortest N-H...cl 

bond length as 3.121. Table 15 lists the H...0 bond 

distances and the N-H...0 bond angles, as calculated by 

OBTSP. These distances and angles were obtained by using the 

calculated positions of the hydrogen atoms. There are six 



www.manaraa.com

048'*) 

Ùi 

M(! 

0(7*)®'' 

>0(5") 

Figure 19. Packing :ln unit cell with fine lines indicating 
possible hydrogen bonding. 0-H distances out to 
2 . 5 A  



www.manaraa.com

76 

Table 14, Internolecular approaches less than 3.5k 

The superscripts designate: 

Symbol X y  z 

(•) - X y - .5 1 .5 - z 
C M  . 5 - X  1 - y .5 + z 

. 5 - X 1 - y z 
(iv) . 5 - X 1 - y z - .5 

( V )  X  - .5 .5 - y 2 - z 
(vi) 1 - X  y - .5 1.5 - z 

Atom 1 Atom 2 Distance^ Atom 2 Distance* 

C(1) 0(2'') 3. 385 13) N(1) N(7') 3.479 11) 
C(1) 0 (8vi) 3. 392 14) N(2) 0 (4" ') 3.022 10) 
C(l) N(9vi) 3. 436 12) N(2) 0 (4iv) 3.102 11) 
C(2) 0(7) 3. 421 13)2 N(2) 0(5iv) 3.303 12) 
C(3) 0(1) 3. 250 12) N{2) 0(6''') 3.384 12) 
C(3) 0(3") 3. 27 8 14) N(2) 0(8vi) 3.424 13) 
C(3) 0(7") 3. 287 14) z N(3) 0(3") 2.980 12) 
C(4) 0(8v) 3. 087 14) N(3) 0(3) 3.084 11) 
C(4) 0(3") 3. 318 15) N(3) 0(1) 3. 152 10) 
C(4) 0(7") J. 366 14) 2 N(4) 0(1) 3.045 10) 
C(U) 0(2') 3. 453 14) N(4) 0(9iv) 3.089 11) 
C{5) 0 (7iv) 3. 326 14) N(4) 0(2') 3.232 11) 
C ( 5) 0(9iv) O 332 15) N(4) 0(6') 3,444 (13)2 
C(6) 0(6''') 3. 078 14) N(5) 0 (8v) 3.214 14) 
C(6) 0(1') 3. 110 14) N(5) 0(6") 3.257 11): 
C(6) 0(4iv) 3. 413 14) N(5) 0(3") 3.296 12) 
N(l) 0(1') 3. 009 11) N(5) 0(4''') 3.450 12) 
N(1) 0(9v) 3. 034 11) N (6) 0(5iv) 2.913 14) 
N(1) 0(6''') 3. 025 11) N(6) 0 (7iv) 3.016 12) 
H (1) 0(2') 3. 173 11) N(6) 0(9iv) 3.201 11) 
»(1) 0(4''') 3. 400 10) 

11) 

iNumbers given in parentheses refer to standard deviations 
occurring in the last dig il. as calculated from e.s. d. given 
by variance-covariance matrix 

^Not drawn 
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Table 15. Distances and angles between calculated hydrogen 
positions and oxygen atoms in the nitrate groups^ 

Atom 1 Atom 2 Distaaçe_lA12 Aagle_ideg^L 

H (N la) 0(2') 2. 150 N ( 1 -H(Nla) -0(2') 174.2 

H(Nia) 0 (1«) 2.269 N (1 -H(N1a) -0(1') 127.0 

H (Nib) 0(6'"') 2.216 N (1 -H(Nib) -0(6* • *) 133.7 

H (Nib) 0(9v) 2.422 H (1 -H(Nib) -0(9v) 116.9 

H (Nib) 0(4'"') 2.432 N (1 -H(N1b) -0(4*•*) 154.3 

H(N2a) 0(4iv) 2. 101 N (2 -H(N2a) -0(4iv) 161.7 

H (N2a) 0 (5iv) 2.425 N (2 -H (N2a) -0 (5iv) 141.8 

H(N2b) 0(4'"') 1.993 N (2 -H (N2b) -0(4' ' ') 169.0 

H(N3a) 0(3* ') 1.949 N(3 -H(N3a) -0(3»*) 172.2 

H(N3b) 0(3) 2.092 N (3 -H(N3b) -0(3) 159.8 

H(N3b) 0(1) 2.319 N (3 -ii(N3b) -0(1) 136.4 

H (N4a) 0(2') 2.336 N (4 -H (N4a) -0(2') 144.6 

H /NUi>V 0(1) 2c 179 N (4 -H(Wubj -0(1) 156,6 

H (N4b) 0 (9iv) 2. 299 N (4 -H (N4b) -0(9iv) 132.7 

H (N5b) 0(8v) 2.491 N (5 -H(N5b) -0(8v) 126.9 

H(N6a) 0 (5iv) 1.874 N (6 -H (N6a) -0(5iv) 173.7 

H (N6a) 0 (7iv) 2. 208 N (6 -H (N6b) -0(7iv) 133.5 

H (N6b) 0(9iv) 2.383 N (6 -H (N6b) -0(9iv) 135.1 

iSuperscripts are listed in Table 14 
^Distances out to 2.5à 
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0...H distances less than 2.ISA for each molecule or 24 per 

unit cell. If each of these corresponded to a hydrogen bond 

they could account for the added stability of the nitrate 

salt. Assuming 3 Kcal-mole-i for a hydrogen bond this would 

correspond to 72 Real of additional stability. The N-H 

stretching freguency, reported by Powell and Sheppard (41), 

is 3195-3060 cm-* for the chloride complex. The correspond­

ing stretching freguency for the nitrate complex occurs at 

3210-3110 cm-i. Molecule A is related to molecules B, C, and 

by screw axes located at x/4, 2/2; %/*, z/2; and x/2, z/U 

respectively. Additional screw axes occur at 3x/4, 2/2; 

32/4, 2/2; and x/2, 32/4. The hydrogen bonding occurring be­

tween the amines of the complex and the nitrate oxygens pro­

vides for a helical relationship between the complex mole­

cules in the unit cell. 

As for the qsGistr? of the cosplsx, so significant 

change was found froa the previous results of experiments 

with the chloride and bromide structures. Table 16 lists the 

interatomic distances and Table 17 the bond angles of the 

complex and nitrate groups. The symmetry of the complex mol­

ecule is D^. The non-cryst illographic threefold axis of ro­

tation forms an angle of -79.5® with the x axis and 74.1° 

with the z axis. The six nitrogen atoms of the ligand mole­

cules form an octahedron around the cobalt atom. The average 

Co-H distance is 1.964 t O.OOBA, in good agreement with the 
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Table 16. Distance between atoms in complex 

Atom 1 Atom 2 Distance -iki 

Co N 1) 1.947 7) 
Co N 2) 1.956 7) 
Co N 3) 1 .964 7) 
Co N 1. 967 8) 
Co N 5) 1. 967 8) 
Co N 6) 1.931 7) 
N(1) C 6) 1.480 13) 
N(2) C 1) 1.468 11) 
N{3) C 2) 1.466 12) 
N(4) c 3) 1.464 12) 
N(5) C 1.459 13) 
N(6) c 1. 489 12) 
C(1) c 2) 1.526 13) 
C(3) c 1,494 14) 
C(5) c 6) 1.457 15) 
N(7) 0 1) 1.233 10) 
N(7) 0 2) 1.249 10) 
N(7) 0 3) 1.227 11) 
N (8) 0 4) 1.245 11) 
N(8) 0 5) 1.236 11) 
N (8) 0 6) 1 .233 12) 
N (9) 0 7) 1.237 12) 
N(9) 0 8) 1.23 3 12) 
N (9) 0 9) 1.249 13) 

1 Numbers given in parentheses refer to standard deviations 
occurring in the last digit as calculated from e.s.d. given 
by variance-covariance matrix 
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Table 17. Bond angles in complexi 

Anile_ideg.l Anale_^deg^ 

N ( 1  - C o -- N ( 2 )  S O .  3 1  ( 3 2 )  C o - N  ( 4 )  - C  ( 3 )  1 0 7  .  6 5 ( 6 2 )  

N  ( 1  - C o -- N ( 3 )  1 7 5 .  6 9  ( 3 1 )  C o - N  ( 5 )  - C  ( 4 )  1 1 1  . 2 9  ( 5 9 )  

N  ( 1  - C o -- N { 4 )  9 2 .  U 9  ( 3 4 )  C o - N  ( 6 ) - C  ( 5 )  1 0 6  . 9 9  ( 5 6 )  

N ( 1  - C o  - N ( 5 )  9 1 .  7 0  ( 3 3 )  N ( 1 )  - C ( 6 )  - C ( 5 )  1 0 6  . 8 7  ( 8 6 )  

N ( 1  - C o  - N ( 6 )  8 5 .  8 5 ( 3 0 )  N  ( 6 )  - C  ( 5 )  - C  ( 6 )  1 0 9  . 4 7  ( 8 4 )  

N { 2  - C o  - N ( 3 )  8 5 .  1 5 ( 3 2 }  N ( 2 )  - C ( 1 )  - C  ( 2 )  1 0 6  . 7 7  ( 6 7 )  

N ( 2  - C o  - N { 4 )  1 7 5 .  8 0  ( 3 4 )  N  ( 3 )  - C ( 2 )  - C ( 1 )  1 0 6  . 6 4 ( 8 1 )  

N  ( 2  - C o  - N ( 5 )  9 1 .  1 5 ( 3 3 )  N  ( 4 )  - C  ( 3 )  - C  ( 4 )  1 0 8  . 7 4  ( 8 6 )  

N  ( 2  - C o  - N ( 6 )  9 2 .  0 0  ( 3 2 )  N  ( 5 )  - C ( 4 )  - C  ( 3 )  1 0 7  . 9 9  ( 8 2 )  

N ( 3  - C o -- N ( 4 )  9 2 .  1 6  ( i l )  0 ( 1 )  - N  ( 7 )  - 0 ( 2 )  1 2 0  . 6 2  ( 9 2 )  

N ( 3  - C o  - N ( 5 )  9 1 .  3 3  ( 3 2 )  0 ( 1 )  - N  ( 7 )  - 0 ( 3 )  1 1 8  . 8 6  ( 8 8 )  

M /3j — C o  - N ( 6 )  9 0 .  8 1  ( 3 0 )  0  ( 2 )  —  t i  ( 7 )  - 0  ( 3  i  1 2 0  . 5 1  ( 9 4 )  

N  ( U  - C o  - N  ( 5 )  8 5 .  1 8  ( 3 2 )  0  ( 4 )  - N ( 8 )  - 0 ( 5 )  1 1 7  . 9 5 ( 9 7 )  

N  ( 4  - C o  - N ( 6 )  9 0 .  7 4 ( 3 1 )  0  ( 4 )  - N ( 8 )  - 0  ( 6 )  1 2 0  . 3 9  ( 9 7 )  

N ( 5  - C o  - N ( 6 )  1 7 5 9 4 2  ( 3 3 )  0 ( 5 )  - N ( 8 )  - 0 ( 6 )  1 2 1  . 6 0  ( 1 0 3 )  

C o - N ( 1 )  - C ( 6 )  1 0 9 .  4 1  ( 5 8 )  0 ( 7 )  - N ( 9 )  - 0 ( 8 )  1 2 1  . 2 6  ( 1 2 6 )  

C o - N ( 2 )  - C ( 1 )  1 1 0 .  0 6  ( 5 3 )  0  ( 7 )  - N  , 9 )  - 0 ( 9 )  1 1 7  . 0 7  ( 1 0 9 )  

C o - N ( 3 )  - C ( 2 )  1 0 8 .  5 3  ( 3 3 )  0 ( 8 )  - N  ( 9 )  - 0 ( 9 )  1 2 1  . 5 8  ( 1 2 3 )  

1 Numbers given in parentheses refer to standard deviations 
occurring in the last digit as calculated from e.s.d. given 
by variance-covariance matrix 



www.manaraa.com

8U 

values obtained for other [Co(en)3]'+ salts listed previous­

ly. The average N-Co-H angle is 89.8 ± 0.3®. Considering 

the combination of planes formed by three nitrogen atons in 

the complex, the average position of the cobalt atom is fixed 

at the center of intersection of these planes. The nitrogen 

atoms in the nitrate groups are also planai with the oxygen 

atoms, within experimental error. The ethylenediamine mole­

cules are of the gauche form, and all three C-C bonds approx­

imately align along the non-crystallographic threefold axis 

of the complex, in the 665 conformation. This conformation 

is opposite that predicted by Raymond, Corfield, and Ibers 

(42), for a strongly hydrogen-bonded system. This could be 

caused by bifurcation of some of the proposed hydrogen bonds. 

The chelate rings are not planar: C(1) and C (2) lie 0.322A 

above and 0.384A below the plane of Co, N(2) and N(3) respec-

tiTelys C\3) and C(%) 1%s 0.49Sn abcvs snd 0.10GA belcv the 

plane of Co, H (U) and N(5) respectively; C(5) and C(6) lie 

0.34UA below and 0.315à above the plane of Co, N(1) and N(6) 

respectively. 

The absolute configuration of the complex was determined 

using the statistical method of Hamilton (43). The structure 

was refined anisotropically with no anomalous correction to 

an R value of 0.085 for the structure and its mirror image. 

When the anomalous correction terms were added, the B value 

for the structure drawn remained the same, while the S value 
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foc the mirror image was raised to 0.089. With conv#rgenc#, 

R values of 0.084 and 0.088 were obtained for the structure 

drawn and its mirror image, respectively, à right-handed co­

ordinate system was used in all calculations and in data 

collection. Therefore the structure is in agreement with the 

criterion that the circular dichroism of the solution of this 

complex has a positive peak at 4930A (Ae = + 1.75 1-mole-i-

cm-i) and a specific rotation at the sodium D-line of • 129®. 

C. X-ray and Gamma-ray Irradiations 

The rate of racemization for the halide and nitrate com­

plexes, under the influence of X-rays follows a more logical 

order than the thermal racemization process. The iodide com­

plex was the easiest to racemize, followed by the bromide, 

chloride and nitrate. The chloride and nitrate complexes 

have about the same rate constants for the racemization 

process. The "V-Visible spsctrus of the halide salts indi­

cated very little decomposition taking place. The maximum 

time used in these experiments was 150 min. for the halides. 

The nitrate complex was irradiated for several hours and a 

detectable amount of decomposition was observed. For a 184.5 

hr, irradiation the nitrate complex lost 50.5% of its optical 

activity and analyzed for 10.3% cobalt(II). 

The racemization caused by the gamma-ray irradiation was 

much slower than that caused by the X-ray irradiation. For a 

five week irradiation the sample lost 20% of its optical ac­
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tivity and also underwent 8% decomposition. The lover rate 

constant for the gamaa-ray irradiated samples, as compared to 

the X-ray irradiated samples, could be attributed to several 

reasons. One possible explanation is the different effects 

caused by each type of radiation. The X-rays are absorbed 

more readily by the cobalt atom than by the other atoms 

present in the complex. The gamma-rays would cause a greater 

reaction with the organic ligand of the complex rather than 

with the cobalt atom. 

The mechanism for the racemization process probably 

differs from the twisting mechanism proposed for the thermal 

racemization process. Busch (44) reported the asymmetric 

racemization, in basic solution, of the tris(ethylenediamine)-

cobalt (III) ion by using the electron transfer process de­

scribed below: 

CCc(III)eR3]3+ :+ [ccCIDsn 3]2+ 

The cobalt(II) complex is very unstable and would racemize 

instantaneously. If the solution is made acidic, the 

cobalt (II) complex is destroyed and the reaction ends. 

Because cobalt(II) and is formed in the reaction 

there must be some species that was oxidized. It would not 

seem possible for the nitrate group to be oxidized, but it is 

possible for the electrons to come from the oxidation of the 

organic species present or possibly from the oxidation of the 

cobalt (III) complex to a cobalt (IV) species. 
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It was noticed that when a sample of the X-ray 

irradiated material was dissolved in water it evolved some 

gas. The principal compound of gas given off in this process 

was identified as hydrogen. The solution was frozen in 

liquid nitrogen to prevent other species from entering the 

mass spectrometer. When the liquid nitrogen was removed from 

the solution the mass spectrum indiated the presence of an­

other substance. The compound had three peaks, corresponding 

to masses 58, U3, and 15 with intensities 40, 100, and 20, 

respectively. Because mass 15 is such a large peak it is be­

lieved to be a distinct unit in the parent molecule. High 

resolution mass spectrum verified that the masses 

corresponded to the compositions: CgHg N2 , CH2N2 and CH ̂  re­

spectively. The above data would be consistent with the fol­

lowing molecular structures: 

a) CH3-S=H-CH3 azomethane 

b) CH3-C (: NH) NH2 acetamidine 

c) CH3-CH=N-NH2 acetaldehyde hydrozone 

d) CHg-CHCNHNH) 3-methyl diaziridine (a three-membered 

ring) 

Structure (a) has a mass spectrum of essentially one peak 

corresponding to the symmetrical cleavage of the N-N double 

bond, structure (b) has not been isolated in a pure form and 

its mass spectrum has peaks corresponding to the unknown com­

pound, but there are several other peaks present. These ad­
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ditional peaks make positive identification impossible. 

Structure (c) has a boiling point of 10 5-7°, no other infor­

mation was available. Structure (d) is not known to exist, 

the 3,3-dimethyl ana other higher derivatives are known for 

the three-meabered ring system. The compound of mass 58 pro­

duced in the X-ray irradiation was in such small quantities 

that positive identification was impossible. 

If the [Cd(en)1%* complex, which is known to be a 

bridged species (45), is irradiated with X-rays, the result­

ing mass spectrum contained several low molecular weight 

masses, the intensity of the peaks were very small. None of 

the masses were 58, 43 or 15. The work on the cadmium com­

plex indicated that the nitrogen atoms have to be coordinated 

to the same central metal atom. 

The mass spectrum of a solution of the gamma-ray 

irradiated sample indicated several peaks of masses 44 and 

below. The mass 44 peak had the largest intensity. It vas 

believed that this mass spectrum was that of a mixture and no 

further identification was tried. 
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V .  FUTURE WORK 

Out of the irradiation studies have arisen several in­

teresting problems for further investigation, also the possi­

bility of some practical uses for the above research work. 

Some of these ideas are listed below: 

a) Irradiation of other amine complexes (ii.e^ pn, bn, 

edta, etc.) 

b) Irradiation of other coordinating ligands (i.e. 

acac, ox, and possibly some sulfur containing ligands) 

c) Studies using different metals as the coordinating 

center atom 

d) Use of specific wavelength radiation in the X-ray 

and gamma-ray irradiations 

e) The use of the nitrate complex as a radiation 

monitoring device for high exposure rates. 

Additional techniques which might prove useful for 

separating and identifying small quantities are column 

chromatography using specific absorbing resins and also the 

use of GC-Mass Spec. 
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